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Abstraction and context in concept representation
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This paper develops the notion of abstraction in the context of the psychology of concepts, and discusses
its relation to context dependence in knowledge representation. Three general approaches to modelling
conceptual knowledge from the domain of cognitive psychology are discussed, which serve to illustrate a
theoretical dimension of increasing levels of abstraction.
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1. INTRODUCTION

Information is represented in the mind at widely different
levels of abstraction. Consider how you might store infor-
mation about a particular scene in a film, about the layout
of the Paris Metro system or about Newton’s first law of
motion. If you are a movie fan, then your memory for the
moment at the end of Casablanca, where Humphrey
Bogart and Claude Rains are left on the airport runway,
will be full of detail; the graininess of the film, the
expressions of faces and voices are likely to be stored and
recalled, even if the memories are inaccurate or distorted.
Your knowledge of the Paris Metro will be a broader set
of information—including some basic geography of Paris,
notions of how distance can be translated into travel time,
and specific details of individual lines or metro stations
that you have passed through. When considering an
understanding of Newton’s laws of motion, we have a type
of knowledge that may involve an ability to verbally
express a formula (‘a body in motion will continue to
move in a straight line with constant velocity unless acted
upon by some force’), together with an ability to use the
law to make predictions and to understand the operation
of a wide variety of physical systems, from cars braking to
satellites orbiting the planet.

These three kinds of stored information represent dif-
ferent levels of abstraction in memory. We even have dif-
ferent ways of describing the information in our
language—using terms such as memory, knowledge and
understanding to refer to information varying from the
specific to the abstract. When we think we have ‘explai-
ned’ or ‘understood’ something, we often mean that some
specific event or situation is to be seen as an instantiation
of some more abstract principle or notion.

One of the key notions underlying the concept of
abstraction is the notion of context independence. Whereas
the scene in Casablanca can only be understood in the
context of that particular film, the laws of motion can be
applied in almost any context. My aim, therefore, is to
develop the notion of abstraction in more detail, and to
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discuss its relation to context dependence in knowledge
representation. I will do this by discussing three general
approaches to modelling conceptual knowledge from the
domain of cognitive psychology, which themselves can be
mapped onto a dimension of increasing levels of abstrac-
tion.

2. ABSTRACTION

The notion of abstraction is itself very abstract, and the
term ‘abstract’ probably has many senses. For example,
we distinguish concrete from abstract nouns in terms of
whether they refer to physical objects or non-physical
notions. Abstract concepts such as ‘loyalty’ or ‘dimension’
may refer to physical situations but they are unrelated to
any direct sensory experience. Abstract art, however, is
painting or sculpture that does not purport to represent
the world in a recognizable form, but in which the sensory
qualities of the paint or object are primary—a Rothko
painting is ‘just’ patches of colour, a Brancusi sculpture
just smooth shiny curves. Thus, we must be careful not
to assume that there is just one notion of abstraction.

Let us begin with a simple example of abstraction, and
then build up to more abstract levels. At its most basic,
the process of abstraction may be considered as a form of
generalization across time and place. Suppose that we set
up a classical discrimination learning experiment in which
a pigeon receives a food reward in the presence of one
class of stimuli, and does not in the presence of a different
class. For example, food may be available if a red key is
pecked, but will be withdrawn if a yellow key is pecked.
If we train the pigeon with red and yellow keys, we can
then test its acquired ‘knowledge’ through a generalization
test. How likely is the pigeon to peck keys of different
shades of colour ranging between red and yellow? Typi-
cally, the level of response will show a generalization gradi-
ent—the pigeon will peck colours that have never been
encountered before, to the extent that they are close or
similar to the ones that were rewarded.

This form of learning employs abstraction because an
experience is identified through linking it to some generic
representation of similar experiences in the past (Millikan
1984). Our memories act to recognize the object or
situation as a familiar one, and we respond accordingly.
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The abstraction involves storing three types of infor-
mation:

(i) information about which dimensions of the situation
are relevant (for example the colour rather than the
shape or size of a key);

(ii) information about which values on which dimen-
sions reliably predict how we should act (for
example the red and yellow values on the colour
dimension);

(iii) information about the range of variability of the pre-
dictive values (so if a range of reds is rewarded, a
more ‘abstract’ representation of the stimulus class
is created than if just a single value is rewarded, and
there will be greater generalization of responding).

Crucially, abstraction also involves not storing anything
else, or at least separating out this action-relevant infor-
mation from the rest. So the representation will be more
abstract the greater the degree to which only the important
or relevant information is stored, and all else is discarded.
Abstraction thus provides for rapid and easy processing of
information—we are not distracted by irrelevant variation
along other dimensions. By contrast, the down side of
abstraction is that we fail to notice or record details, which
may prove to be relevant should the task or situation
change.

All abstraction therefore involves selectively discarding
some of the information presented. So, for example, we
may form an abstract representation of the concept TRI-
ANGLE through selecting out the common elements
(closed plane figure with just three straight sides and three
corners) and ignoring details of the angles or sizes of indi-
vidual triangles that we may have encountered or could
imagine.

Along with this selection of relevant dimensions comes
the construction of a type representation—a representation
not of an individual or particular object, but of a class
of possible objects. Individual objects may be encoded in
memory with more or less attention to detail, and so give
rise to memories that are more concrete or more abstract.
Remembering that the bank robbers escaped in some kind
of car will be a more abstract recollection than remem-
bering that they drove off in a rusty red station wagon with
a broken tail-light. However, the formation of a type is a
different form of abstraction. Individual objects are tokens
or instances of particular categories of thing. To represent
that category as a type is to assume that there is something
that such tokens have in common. We then set up a type
representation that is more than just a collection of
remembered exemplars.

The process of abstraction of a type involves us in mak-
ing an ontological commitment that the collection of indi-
viduals we have encountered constitutes some form of
coherent class. To illustrate this, let us consider a medical
example. A physician may start encountering several
patients with similar symptoms—headaches, night sweats
and loss of appetite. Initially she may class them together
purely on the basis of these symptoms. Such a category is
convenient, because it can be given a name, and can be
used as the basis for organizing case records. At this point,
the physician may then decide to adopt a hypothesis that
these cases have some common cause—there is, perhaps,
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some infectious agent, or some toxicity in the environment
that is producing the cluster of similar cases. To form such
a hypothesis is to create an abstract type representation
for the category. Although behaviourists often speak of
discrimination learning as a form of ‘concept learning’,
one could argue that it is only with the construction of
types that true concept formation occurs.

The final, and most abstract, stage in the development
of abstract representations of the world is to construct a
type hierarchy. Our conceptual knowledge is organized
around an ontological framework (Keil 1979). We divide
the world into domains of people, biological kinds, arte-
fact kinds, individuals, qualities, events and so forth. In
each domain, there is a form of template that dictates what
relevant kinds of information should be stored. In the case
of people, we may store their age, behaviour or beliefs. In
the case of a car, age and behaviour are relevant but beliefs
are not. To understand what questions it is relevant to ask
about some new class, and what questions would just
make no sense, we must abstract a framework in which
there are types of types. One common assumption, used
to good effect in object-oriented programming languages
is that concept types are organized in a hierarchy (Keil
1979).1

3. THE ORIGINS OF ABSTRACTION

Empiricist and rationalist traditions in philosophy agree
that the mind can form both specific and abstract rep-
resentations. We are, at the same time, capable of appreci-
ating the rich flavour of a particular sauce, and speculating
about the status of ethical laws in human society. The
argument between the traditions is about the origins of
these representations and whether abstract structures are
a necessary precursor to empirical learning.

This argument is also endemic in psychological theories
of cognition. It has been argued that all knowledge must
be grounded in some form of sensory experience, and that
theories of learning are therefore crucial to understanding
how knowledge comes about. By contrast, one can argue
that without some form of abstract structure to give mean-
ing to experience, learning would be random and imposs-
ible. Piaget was one of those who understood this problem
most clearly (Piaget & Inhelder 1969). In his theory of
development, the child begins with rudimentary struc-
tures—schemas—that allow action to be tied to sensory
input (for example the sight of a face leads to tracking
of the eyes). These schemas then develop and change by
adapting themselves to the structure of experience, thus
allowing richer meaning to be given to new inputs.

Psychological models of concept representation differ in
the emphasis that they place on bottom-up learning pro-
cesses as opposed to top-down interpretative processes. In
the next section, I turn to the consideration of two broad
classes of model that can be differentiated on this basis.

4. MODELS OF CONCEPTS

The two classes of model considered both use similarity
as the basis for forming categories. Exemplar models do
so in terms of stored individuals, whereas Prototype mod-
els do so by abstracting a single representation of the class.
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(a) Exemplar models
Exemplar models of concept representation are located

at the ‘specific’ end of the abstraction dimension. There
are two main lines of research employing these models.
The first line is research into ‘non-analytic’ cognition
developed by Lee Brooks and Bruce Whittlesea, and the
second line involves constructing models of category
learning based on representing exemplars in similarity
spaces.

(i) Non-analytic cognition
Brooks (1978) proposed the radical thesis that much

human behaviour that we assume to reflect conceptual or
analytic thinking is in fact based on more specific memory-
like processes. For example, we commonly find typical
members of categories (for example cars as vehicles) easier
to process than atypical members (such as hot-air balloons
as vehicles). Rosch (1975) proposed that this is because
of the similarity of different category members to some
stored prototype for the category (see also Hampton
1979). However, it is equally possible that each time we
encounter a vehicle we store some quite specific memory
of it, and that the speed of processing typical category
members reflects the relative frequency with which they
are encountered, rather than anything that would require
there to be a generic abstract representation of the cate-
gory prototype. Research on this question (Barsalou 1985;
Hampton 1997a) has shown that speed of categorization
is influenced by both frequency of items in the world and
their similarity to a prototype. Hampton (1997a) found
that when the task of categorizing words was made very
quick and easy, by having only unrelated false items as
fillers, then frequency was the primary predictor of catego-
rization speed. However, when the task required more
cognitive effort to discriminate members from related
non-members, similarity to prototype was more influen-
tial.

The non-analytic cognition tradition has provided many
experiments demonstrating the strong effects of prior pro-
cessing episodes on subsequent use of abstract knowledge.
For example, even when the task is to classify stimuli on
the basis of a simple rule, performance is affected by prior
exposure to the stimuli (Allen & Brooks 1991). For a
review of many of these demonstrations, see Shanks
(1995).

Brooks et al. (1991) conducted a study of doctors’ diag-
noses of common skin diseases. The participants in the
study first worked their way through named slides of skin
disorders of various categories, and rated how typical they
were of their disease category. Later, they were given a
new set of slides to categorize according to the diagnostic
categories. Brooks et al. (1991) found that the preferred
diagnosis was consistently influenced by the similarity of
a novel case to the recently viewed cases of that category.
Even though the experts had been trained in the appli-
cation of abstract rules for classification, they were unable
to avoid using similarity to recently experienced exemplars
to help them categorize. Brooks concludes that perhaps
much of the behaviour that we assume is based on abstract
representations is actually exemplar based.

This approach is the most clearly anti-abstractionist. It
makes no assumptions about representation, other than
that a stimulus may evoke the memory of an earlier one
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together with its processing history. All that is required for
a model of concept representation is some way in which
a novel stimulus or experience can evoke the right kind of
earlier episode—a principle of ‘reminding’. Such a system
must presumably be mediated by a representational
medium of some form. Reminders are typically triggered
by salient perceptual features of a stimulus rather than
abstract or functional features (Ross et al. 1990), so it
must be assumed that there has been some selective stor-
age of information. However, the force of the demon-
strations is that this selection is probably automatic and
driven by basic perceptual attention processes, and is not
easily modified by the imposition of strategies for the per-
formance of the task.

One clever way to determine how much abstraction is
involved in a task is to use an implicit learning paradigm.
Barsalou & Ross (1986) presented participants with lists
of words to read. At a later stage, they were asked to esti-
mate the frequency with which particular classes of word
had appeared. Frequencies for categories based on simple
perceptual features (e.g. red objects) were not estimated
better than chance—participants were unable to say
reliably whether there had been one, two, three or four
red objects in the list. However, frequencies for common
superordinate categories such as Birds, Fruits or Vehicles
were well estimated. A plausible interpretation of this
result is that there is some automatic encoding of a word’s
superordinate category when it is read and understood. If
so, then this would be evidence for a degree of automatic
abstraction occurring during the processing of the
word’s meaning.

(ii) Generalized context model
Perhaps the best known and most influential exemplar

model for concept representation is the GCM developed
by Robert Nosofsky (1988). The GCM is a model of
classification learning and has largely been tested through
studies in which participants have to learn to classify a set
of simple visual shapes into two categories. Measures are
taken of the rate of learning of individual stimuli, and a
test is made of generalization of the learning to a transfer
set of stimuli that were not seen in training.

The model assumes a very simple system for rep-
resenting a category, involving a minimum of abstraction.
Individual exemplars are stored together with their cate-
gory labels, and the subsequent classification of a new
stimulus is based on the overall similarity of the stimulus
to the stored exemplars of each category in memory.

In more detail, the GCM assumes that each exemplar
is analysed along a set of dimensions (experimental tests
of the model typically use visual stimuli that can be fully
defined by their position on just two independent dimen-
sions such as size and orientation). By plotting a space
with the dimensions as axes, it is then possible to store an
exemplar and its category by placing the label of that cate-
gory at the point in the space corresponding to the exemp-
lar’s dimensional coordinates. Once the space has become
populated with exemplars, the categorization of a novel
stimulus can be made by comparing the sum of similarities
to members of category A with the sum of similarities to
members of category B. The probability of categorizing
the stimulus as an A is predicted directly through a for-
mula comparing these two summed similarities.
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Formally, the model uses several mathematical devices,
details of which can be found in Nosofsky (1988) or Lam-
berts (1997). To fit the data from any experiment, it is
also necessary to use the data to estimate several para-
meters for the model. These include the following: the
relative importance of each dimension; the rate at which
similarity to a stored exemplar drops off as a function of
distance in the space; and the degree to which the prob-
ability of choosing a category is maximized (always choos-
ing the more likely category) or follows probability
matching (responding with a probability that matches the
likelihood of the category being correct).

The GCM has had considerable success in giving pre-
cise quantitative fits to data from a range of different
experimental paradigms, including recognition accuracy
for individual exemplars, and speed of categorization
(Lamberts 1995). More recently, the generality of the
model has been challenged by J. David Smith, who has
demonstrated a range of situations in which performance
indicates that people may abstract a prototype rather than
store individual exemplars (Smith & Minda 1998).
Broadly speaking, where a category has many exemplars,
and the differentiation between categories is relatively easy
(large distances between categories relative to variance
within), then there tends to be more evidence for the for-
mation of a category based around a prototype (a single
point in the stimulus space) rather than exemplars.

Exemplar models employ a degree of abstraction,
because only the information about position in the simi-
larity space is encoded for any stimulus, all other infor-
mation is lost. Where there are additional dimensions of
variation that are not relevant to the classification, it can
be shown that attention shifts away from these dimensions
and they lose any influence in determining performance
(Goldstone 1994). A model that successfully captures the
learning of dimensional weights during classification
learning is the ALCOVE model developed by John
Kruschke (1992). Goldstone has demonstrated that this
form of learning can affect visual discrimination abilities—
people retune their perceptual processing of the stimuli to
attend to the dimensions that are more relevant.

To what extent is it possible to abstract out from a per-
ceptual array only those dimensions that are relevant to a
discrimination? An answer to this question can be found
in the work of Garner (1978) who developed the distinc-
tion between separable and integral dimensions. If a pair
of dimensions are separable (such as shape and colour)
then it is possible to attend to only one dimension, and
variability on the other dimension will not interfere with
processing. Furthermore, similarity between stimuli will
be the inverse of an additive function of distance on each
dimension. Where a pair of dimensions are integral (such
as hue and saturation in colour) then variability in one
dimension will always interfere with judgements on the
other, and similarity between stimuli is best captured by
using a Euclidean function (similarity is inversely related
to the square root of the sum of the squared distance on
each dimension).

(iii) Exemplars and natural categories
There have been relatively few attempts to generalize

the GCM beyond the realm of tightly controlled labora-
tory experiments using simple visual stimuli. A notable
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exception is the work of Gert Storms and his colleagues.
For example, Storms et al. (2000) compared two models
of category internal structure. For a prototype model (see
next section), they predicted that typical category mem-
bers would be those with the most features in common
with the category prototype (Hampton 1979). For an
exemplar model, they predicted that typical category
members would be those that shared most features with
the top few most frequently generated members. Their
results showed that for a range of measures of category
structure (speed of categorization, rated typicality and so
forth), the exemplar measure was as good as, or in some
cases better, than the prototype measure. Optimum fit was
obtained when combining similarity to approximately 10
exemplars.

Another demonstration of exemplar effects was a study
by Storms et al. (2001) in which they examined how
people classify edible plant objects into fruits and veg-
etables (or their equivalent in Flemish). They obtained a
range of exotic produce that was unknown to their parti-
cipants and obtained ratings of similarity to familiar fruits
and vegetables, and judgements of which category they
belonged to. They found that similarity to known exemp-
lars was a better predictor of classification than was the
degree of feature match with the category prototype.

(b) Prototype models
Prototype models stand in the ‘middle ground’ between

non-analytic exemplar storage and highly abstract ‘theory-
like’ conceptual representations. A variety of represen-
tational assumptions can be adopted. For example, one
can assume that stimuli are represented in a multidimen-
sional similarity space (Rips et al. 1973) of the kind also
used by exemplar models. Or one can assume a more
powerful schema-based representational format (e.g.
Smith & Osherson 1984; Hampton 1987, 1995a).

(i) Spatial prototype models
The key difference between prototype and exemplar

models of classification learning is that prototype models
involve abstraction over exemplars to represent the central
tendency and the variability within the category. Rather
than represent each exemplar as a point in the similarity
space, the prototype model would represent the centre of
each category cluster and define the category as a region
in the space centred on that point. Individual exemplars
are therefore merged into a single generic representation.

There are two effects of using a prototype represen-
tation. First, the likelihood of selecting a category will
decrease in a smooth monotonic fashion as distance from
the centre of the category increases. There will be no local
maxima in the regions close to individual exemplars as
occur in the exemplar model. Second, information about
higher-order covariance of features across exemplars is
lost. The bivariate distribution of exemplars across two
dimensions of the space may show a correlation, but the
prototype only represents the centre of the cluster and not
its shape.

(ii) Exemplars versus prototypes
Prototype models do better at explaining learning when

the stimuli are more complex, when there are more of
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input layer

hidden layer

output layer

Figure 1. A simple feed-forward network for learning to
categorize on the basis of input features. The more nodes
allowed within the hidden layer, the more the network is
able to learn the characteristics of individual exemplars. The
more the number of hidden layer nodes is restricted, the
more the network forms generalizations of the stimulus set.
The degree of abstraction is thus related to the size of the
hidden layer.

them, and when the category structure is well differen-
tiated (Smith & Minda 1998).

A clear way to show how the difference between the
models can be understood as one of degree of abstraction
is by implementing the models within the same structure
of a neural net (see figure 1). Barsalou (1990) argued per-
suasively that exemplar and prototype representations dif-
fer only in the degree to which individual exemplar
information is retained (exemplar model) or discarded
(prototype model). If one considers the simple feed-for-
ward neural network in figure 1, the input layer encodes
the particular set of features of different exemplars, the
network carries this pattern through on the basis of the
weights of each connection into a hidden layer, and then
into an output layer where the different nodes each corre-
spond to a different category. It is easy to show that, in
such a model, the degree to which it behaves like an
exemplar or like a prototype model is simply a function
of how narrow the hidden layer is made to be. If the hid-
den layer has very few nodes, then the model necessarily
has to throw away individual information about particular
exemplars. There are not enough hidden layer nodes for
each possible pattern of input to generate a distinctive pat-
tern in the hidden layer, and so abstraction is forced on
the representation. By contrast, if there are enough hidden
layer nodes, each exemplar can be mapped onto a parti-
cular pattern in the hidden layer, and the category
response then mapped onto that.

This aspect of the way in which neural networks learn
is well understood, and when training them it is necessary
to choose an appropriate number of hidden layer nodes
to achieve the desired level of learning. Too many nodes
leads to rapid learning on the training set but very poor
generalization to a transfer set. Too few may lead to slow
and incomplete learning of the training set, with some
exceptional items never properly learned, but generaliz-
ation to the transfer set will be improved. The hidden layer
acts in statistical terms to reduce the dimensionality of the
variance in the stimulus array, in a way that will be maxi-
mally useful for predicting the correct categorization.
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(iii) The effects of increasing expertise
As learning continues, so more exemplar information is

likely to become stored. Smith & Minda (1998) found that
prototype models were a better fit early in learning,
whereas exemplar models were better at a later stage. It
is easier to obtain a general idea of two broad classes first,
but achieving a more accurate level of performance
requires the learning of individuals. This notion, that
exemplar representations come with increasing expertise,
has some support from studies of expertise in decision-
making. In complex domains where knowledge and its
application are uncertain, experts have been shown to
have a greater store of relevant experience than well-
trained novices, and to rely to a greater extent on stored
exemplars (using a process known as ‘case-based
reasoning’) in reaching decisions. Rosch et al. (1976) also
argued that the perception of a class as having high com-
monality—associated with their notion of a ‘basic level
class’—can change with expertise in the same manner.
The novice student of art history may see paintings by
Vermeer as a single recognizable category, based on a
prototype of the typical qualities of light and subject mat-
ter. To the expert, all the known individual paintings by
the master are represented as familiar individual exemp-
lars, so that the prototype representation no longer serves
any great purpose.

(iv) Schema-based prototypes
Prototype models were originally developed for classi-

fication learning of visual stimuli (Posner & Keele 1968),
but they were quickly adapted as models of common
everyday concepts like Chair or Fruit (Rosch 1975;
Hampton 1979). Of course the variety of Fruits require
that the dimensionality of a similarity space would be very
large, and in fact there is good evidence that the assump-
tions required for mapping similarities into multidimen-
sional space are often violated by more complex natural
concepts (Tversky 1977). It is therefore best to abandon
the assumption of a similarity space as the medium for rep-
resentation. In its place, concepts such as these are com-
monly represented using Minsky’s idea of a frame with
slots (= features or dimensions) and fillers (= values or
ranges) (Minsky 1975).

For example, figure 2 shows part of a possible frame
representation for the concept of APPLE. Slots represent
variables that will differentiate different concepts within a
particular domain. Thus, for fruits and vegetables, they
would represent shape, colour, taste, origin and so forth.
For vehicles, they might represent form of locomotion
(wheels or wings), shape, use (passengers or freight) and
location (air, land or sea). The particular set of slots for
a domain will reflect the level of abstraction described
above as an ontological framework. Thus depending on
the location of a concept within the ontological hierarchy
it may be expected to use a particular range of slots
(although the frame representation is likely to be very flex-
ible and expandable; Barsalou & Hale 1993).

These schema representations are prototype models, in
that a single representation is used to store the central
tendency and range of variation in the category across rel-
evant dimensions, but no exemplar information is stored.
They also have the important characteristic of prototype
models, that although the most typical exemplars will be
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slot

shape

origin

size

colour

function

sub function

taste

values

spherical with stalk

trees

range from 4 to 15 cm

distribution across red, green, brown, yellow

eaten

eaten on own, in pies, in sauce

sweet, acidic

Figure 2. A (partial) frame representation for the concept APPLE.

clearly described, the schema itself will not determine pre-
cisely the boundaries of the category. This vagueness in
the placing of category boundaries differentiates schematic
prototypes from more precise rule-based or well-defined
concept representations.

Barsalou & Hale (1993) also describe how more power-
ful representations can be constructed around frame-
based schemas by introducing constraints and meta-con-
ceptual principles defined across the slots in the frame.
Abstract knowledge—of the kind sometimes referred to as
‘naive theories’—can be incorporated into the represen-
tation in this way. For example, within the domain of bio-
logical kinds there are constraints that operate between
size, habitat, shape and means of locomotion. Small crea-
tures may have wings and fly in the air. Creatures of any
size may swim through the water by moving a tail. There
is good evidence that we are aware of, and represent many
of these higher-order relations between different features
within a representation (Murphy & Medin 1985),
although it is unclear to what extent we may be able to
articulate such abstract knowledge in an explicit form.

Schematic prototypes therefore typically involve:

(i) a frame with slots and values;
(ii) constraints operating between dimensions that

reflect the broader principles of world knowledge;
(iii) categorization rules that weight different dimensions

in relation to their ‘centrality’ in the structure (as
determined by the constraints).

The models tend to be imprecise about how a stimulus
might be encoded, and about how categorization is
decided. Rips (1989) suggested that we categorize some-
thing by finding the conceptual schema that provides the
‘best explanation’ of the observable features of the object.
There is also evidence (Ahn 1998) that, given a schema
in which some features are represented as the cause of
others, people will give greater weight to the causally
active features and less to their effects when categorizing.
However, much needs to be done to discover how wide-
spread such effects may be in the categories that we use in
everyday reasoning. Some research (Malt 1990; Hampton
1995b) suggests that people are often quite indiscriminate
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in the way that they attribute weight to different kinds of
information when deciding how to categorize an object.

5. CONTEXTUAL EFFECTS IN CONCEPT
REPRESENTATION

Having described two basic classes of model on the
basis of different levels of abstraction, I now turn to the
question of context dependence. Contextual effects in
conceptual tasks are prima facie evidence for the lack of
abstraction. We have already discussed demonstrations by
Brooks of the effects of the context of recent experience on
performing categorization tasks. However, there are other
forms of context manipulation that can have equally
strong effects.

Exemplar and simple non-schematic prototype models
are similarly affected by specific context effects. In parti-
cular, the order in which exemplars are presented early on
in learning and the separability of the relevant dimensions
may have effects on how quickly the category is learned.
However, there are much more interesting context effects
to be found with schema-based concept representations.
I argue that such effects frequently occur through a pro-
cess of instantiation, which can be thought of as the filling
out of abstract representations with more specific features
to help the concept to fit into the current context.

(a) Context-dependent properties
One powerful effect of context is the addition of new

dimensions to a representation. Barsalou (1982) used the
example of a basketball. Participants had to verify two
kinds of sentence. Some were constructed using highly
associated properties as predicates—for example, ‘a bas-
ketball is round’. Others were constructed using weakly
associated properties that were still nonetheless true, such
as ‘a basketball floats’. Without any prior context, the for-
mer were more rapidly verified than the latter. However,
if in the context of a prior sentence, such as ‘Harry threw
the basketball into the pool’, the two sentences became
equally fast to understand.

One way to interpret this result is to suppose that in
the context of understanding the prior sentence about a
swimming pool, the attribute ‘floats’ is added to the rep-
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resentation of basketballs. A particular individual basket-
ball is represented in working memory, and its roundness
is part of that representation regardless of the prior con-
text. Its ability to float is added to the representation to
provide coherence to the storyline, and allow a successful
simulation in working memory of the situation described.
Barsalou (1999) has since greatly developed the notion of
mental simulation in regard to concepts, and argues that
our basic conceptual knowledge consists of a set of abili-
ties to mentally simulate objects in situations.

The context of placing a word in a sentence may also
lead to the negating of common attributes. Consider the
sentence ‘The family watched hungrily as the cook took
the bird out of the oven’. Clearly attributes of birds such
as flying, having feathers and singing in trees will be absent
from the working memory representation of the word in
this context, although it is not known whether they are
initially present and then deleted, or whether it is possible
for the modified representation to be constructed directly.

(b) Instantiation as the reverse of abstraction
It is possible to argue that most context effects involve

the instantiation of an abstract concept by reference to
plausibility in the context. For example, Roth & Shoben
(1983) presented sentences such as ‘the trucker sipped the
beverage’ and ‘the bird crossed the farmyard’. They
showed that in such circumstances, there was considerable
priming of words that were plausible instantiations of the
abstract category term (for example coffee, or chicken).
There is a clear link here with Rosch and Mervis’ notion
of the basic level of concepts. The basic level in any con-
ceptual hierarchy picks out the concept terms that are
most general, but still easily imagined, in terms of a visual
image. For example, the following are basic terms: car,
chair, penguin or banana. Basic level terms are the first
nouns that children typically learn, and they have been
shown to have a wide range of processing advantages over
more superordinate terms such as vehicle, furniture or
fruit.2 Instantiation in context appears to involve the
retrieval of a basic level concept that will plausibly replace
the superordinate. We can easily imagine a cup of coffee
in the trucker’s hand, but not so easily an unspecified bev-
erage. Interestingly, it is probably rare that instantiation
would venture to be more specific than the basic level—
we do not appear to fill in what colour the chicken was
or whether the coffee was white or black when under-
standing the sentences.

A second example of context effects involving instanti-
ation is some research by Barsalou (1987). He had the
original idea of asking students to adopt different points
of view when making judgements about the typicality of
different members of a category. For example, they might
have been asked to judge a list of vehicles for how typical
they were from the point of view of a suburban housewife
as opposed to the point of view of a farmer. In this case,
the students were able to agree on a consistent notion of
how typical the objects would seem to the target group,
and the ranking of typicalities changed radically according
to point of view. Indeed, when asked to make judgements
from the point of view of a university professor, they were
in reasonable agreement with the actual views of pro-
fessors measured independently (although the professors

Phil. Trans. R. Soc. Lond. B (2003)

were apparently less good at matching the views of
students).

How to explain these effects? A shift in typicality gradi-
ents might indicate that a different prototype has been for-
med, but it is unclear how the students would be able to
know what kind of prototype a farmer or housewife might
have. A more probable account is to suppose that the stu-
dents were relying on exemplar representations, using
their knowledge of the likelihood of finding trucks, trac-
tors, estate cars or sports cars in the environment of a farm
or suburb.

A third example of instantiation processes comes from
the author’s own studies of conceptual combination using
conjunctively defined conceptual categories (Hampton
1987, 1988, 1997b,c). If people are asked to list attributes
of birds, and separately to list attributes of pets, they will
produce a list of about 30 different common properties.
In Hampton (1987), I investigated (among other
conjunctions) which of these properties would then be
considered true of the conjunction ‘birds which are pets’.
A striking result was that people generated attributes for
the conjunction that had not been considered true of
either class considered alone. Birds do not live in cages
and nor do pets, but clearly pet birds do. People also
claimed that pet birds can talk, although other subjects
had judged it impossible for pets to talk. Once again, once
the two superordinate categories were placed in context,
particular basic level concepts were instantiated—in this
case, concepts such as PARROT. The ‘emergent features’
of conceptual conjunctions were mostly of this kind—
properties that were true of high probability instantiations
of the conceptual conjunction.

An even stronger effect was found when negated con-
junctions were studied (Hampton 1997b). For example,
the concept ‘dwellings which are not buildings’ was
instantiated (implicitly) as tents and caravans, and proper-
ties generated for the conjunction reflected the common
features of these objects.

Sometimes it seems impossible to perform some con-
ceptual tasks without instantiating abstract categories into
more basic level ones. An example is the ‘impossible
object task’ (Hampton 1997c). In this task, people are
asked to imagine an object that does not exist, such as ‘A
piece of furniture which is also a fruit’.

They are encouraged to list properties of the object, to
consider ways in which it differs from standard furniture
or standard fruit, and to draw a picture to illustrate it if
they wish.

The task is difficult, and only about half the participants
typically find a reasonable resolution of the problem.
Where successful, solutions appear to involve the follow-
ing four elements:

(i) a search for instantiations of furniture and of fruit;
(ii) alignment of schemas;
(iii) identification of conflicting elements;
(iv) invention of modifications to reduce the conflict.

For example, they may choose to instantiate furniture
as a chair, and then search for some fruit that could be
fashioned into a chair. They may then look for something
strong and large with a flat surface that could be sat upon,
and come up with a pumpkin. At this point stage (ii)
involves finding links between the parts and functions of
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one concept and those of the other. At various points in
this process, the same slot needs to be filled with values
that are incompatible. For example, chairs need to be long
lasting, whereas pumpkins will start to rot. The final stage
then involves a creative process of modifying one or other
concept to ensure the resolution of the conflict—for
example, people may declare that the chair will need
replacing regularly but could be turned into a nice soup,
or alternatively they may declare that genetic modification
of the pumpkin has led to a fruit that remains hard and
unripe for many years without a problem.

Most striking about these results is that people never
create a new kind of furniture, or a new kind of fruit.
There is almost always an instantiation of a familiar type,
although it may not always be typical (depending on the
particular constraints imposed by the other category).

6. CONCLUSIONS

In this paper, I have argued that abstraction within con-
ceptual representations involves three levels:

(i) the selective storage of relevant information and dis-
carding of irrelevant information;

(ii) the development of type rather than token represen-
tations;

(iii) the development of higher-order constraints within
an ontological hierarchy.

Psychological models of concepts are distinguishable by
the level of abstraction that they incorporate and, in parti-
cular, exemplar models operate at a much lower level of
abstraction than prototype models. There is considerable
evidence that people operate at a very specific level of
information processing, even when faced with relatively
abstract tasks. Furthermore, a range of context effects are
best understood by supposing that when presented with
broad superordinate terms, there is a preference for
instantiating them at the basic level.

ENDNOTES
1An additional form of abstraction is the creation of metarepresenta-
tions—representations of representations. This type of abstraction is very
important in mathematics and several sciences, but I will not discuss it
here.
2Bird is an exception here—it appears from the evidence that both ‘bird’
and ‘penguin’ are basic level terms—a complication that there is not space
to explain here.
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